A class of residual distribution schemes and their relation to relaxation systems

نویسنده

  • James A. Rossmanith
چکیده

Residual distributions (RD) schemes are a class of of high-resolution finite volume methods for unstructured grids. A key feature of these schemes is that they make use of genuinely multidimensional (approximate) Riemann solvers as opposed to the piecemeal 1D Riemann solvers usually employed by finite volume methods. In 1D, LeVeque and Pelanti [J. Comp. Phys. 172, 572 (2001)] showed that many of the standard approximate Riemann solver methods (e.g., the Roe solver, HLL, LaxFriedrichs) can be obtained from applying an exact Riemann solver to relaxation systems of the type introduced by Jin and Xin [Comm. Pure Appl. Math. 48, 235 (1995)]. In this work we extend LeVeque and Pelanti’s results and obtain a multidimensional relaxation system from which multidimensional approximate Riemann solvers can be obtained. In particular, we show that with one choice of parameters the relaxation system yields the standard N-scheme. With another choice, the relaxation system yields a new Riemann solver, which can be viewed as a genuinely multidimensional extension of the local Lax-Friedrichs scheme. This new Riemann solver does not require the use Roe-Struijs-Deconinck averages, nor does it require the inversion of an m ×m matrix in each computational grid cell, where m is the number of conserved variables. Once this new scheme is established, we apply it on a few standard cases for the 2D compressible Euler equations of gas dynamics. We show that through the use of linear-preserving limiters, the new approach produces numerical solutions that are comparable in accuracy to the N-scheme, despite being computationally less expensive.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Tabu Search to a Special Class of Multicommodity Distribution Systems

Multicommodity distribution problem is one of the most interesting and useful models in mathematical programming due to its major role in distribution networks. The purpose of this paper is to describe and solve a special class of multicommodity distribution problems in which shipment of a commodity from a plant to a customer would go through different distribution centers. The problem is t...

متن کامل

High-Order Hyperbolic Residual-Distribution Schemes on Arbitrary Triangular Grids

In this paper, we construct high-order hyperbolic residual-distribution schemes for general advection-diffusion problems on arbitrary triangular grids. We demonstrate that the second-order accuracy of the hyperbolic schemes can be greatly improved by requiring the scheme to preserve exact quadratic solutions. We also show that the improved secondorder scheme can be easily extended to the third-...

متن کامل

Buoyancy Term Evolution in the Multi Relaxation Time Model of Lattice Boltzmann Method with Variable Thermal Conductivity Using a Modified Set of Boundary Conditions

During the last few years, a number of numerical boundary condition schemes have been used to study various aspects of the no-slip wall condition using the lattice Boltzmann method. In this paper, a modified boundary condition method is employed to simulate the no-slip wall condition in the presence of the body force term near the wall. These conditions are based on the idea of the bounce-back ...

متن کامل

Application of Tabu Search to a Special Class of Multicommodity Distribution Systems

Multicommodity distribution problem is one of the most interesting and useful models in mathematical programming due to its major role in distribution networks. The purpose of this paper is to describe and solve a special class of multicommodity distribution problems in which shipment of a commodity from a plant to a customer would go through different distribution centers. The problem is t...

متن کامل

A Class of Approximate Riemann Solvers and Their Relation to Relaxation Schemes

We show that a simple relaxation scheme of the type proposed by Jin and Xin Comm. Pure Appl. Math. 48(1995) pp. 235{276] can be reinterpreted as deening a particular approximate Riemann solver for the original system of m conservation laws. Based on this observation, a more general class of approximate Riemann solvers is proposed which allows as many as 2m waves in the resulting solution. These...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 227  شماره 

صفحات  -

تاریخ انتشار 2008